A New Bislabdane-type Diterpenoid from Cunninghamia lanceolata

Jiang DU, Ming Lei WANG, Ruo Yun CHEN and De Quan YU*
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing 100050

Abstract

A new bislabdane-type diterpenoid lanceolactin (1), was isolated from the roots of Cunninghamia lanceolata. Its structure was elucidated on the basis of spectroscopic methods, especially 2D-NMR techniques.

Keywords: Cunninghamia lanceolata, bislabdane-type diterpenoid; lanceolatin.

Cunninghmia lanceolata Hook. is a traditional Chinese medicine used for the treatment of hernia, arthritis and strangury. Its chemical constituents have been examined ${ }^{1,2,3,4}$. In a previous paper we reported a bislabdane-type diterpenoid lanceolatic acid from the roots of the plant ${ }^{5}$. Further chemical studies on this plant led to the isolation of another new bislabdane-type diterpenoid, named lanceolatin (1).

Compound 1 was obtained as white amorphous powder. mp 232-234 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{18}$ -24 (c 0.10, CHCl_{3}). The negative HRFABMS exhibited a $[\mathrm{M}-\mathrm{H}]^{-}$peak at m / z 589.4653 corresponding to the molecular formula $\mathrm{C}_{40} \mathrm{H}_{62} \mathrm{O}_{3}$ ($[\mathrm{M}-\mathrm{H}]^{-}$calcd. 589.4621). The presence of carboxyl groups ($1701 \mathrm{~cm}^{-1}$) and double bonds (1645, $895 \mathrm{~cm}^{-1}$) was indicated by the IR spectrum. The ${ }^{1} \mathrm{H}$ NMR experiment suggested that compound 1 contains six methyl groups, one hydroxymethyl, six olefinic protons. Comparison of the spectral data of $\mathbf{1}$ with those of lanceolatic acid showed that both of them were constructed by a Diels-Alder cycloaddition of two diterpene monomer
units. However, lanceolatic acid was constructed by two identical monomers (12E-8 (17)-12, 14-labdatrien-18-oic acid) while 1 was by different monomers (12E-8(17), 12, 14-labdatrien-18-ol and 12E-8 (17)-12, 14-labdatrien-18-oic acid). There are two ways in which the Diels-Alder cycloaddition reaction could occur, either head-to-head or head-to-tail. Furthermore, one monomer should serve as diene and the other as dienophile in the Diels-Alder cycloaddition reaction. Then, there are four possibilities for the structure. As seen from the ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ COSY spectrum, the chemical shift difference of two protons connected with $\delta_{\mathrm{C}} 107.8\left(\delta_{\mathrm{H}} 5.00-4.73\right)$ were more than that of two protons attached to $\delta_{\mathrm{C}} 107.6$ ($\delta_{\mathrm{H}} 4.96-4.86$). It is because that one proton was shielded and the other was deshielded by the double bond between $\mathrm{C}-18$ and $\mathrm{C}-19$. Therefore, the monomer contained $\delta_{\mathrm{C}} 107.8$ should be as dienophile in the Diels-Alder cycloaddition. The carbon at C-21 ($\delta 58.0$) showed correlations with H-37 ($\delta 4.73,5.00$) and H-40 ($\delta 0.94$); C-25 ($\delta 48.5$) correlated with $\mathrm{H}-40(\delta 0.94)$ and $\mathrm{H}-38(\delta 0.83)$, as well as $\mathrm{C}-39(\delta 71.4)$ correlated with $\mathrm{H}-38$ ($\delta 0.83$) in its HMBC spectrum. All these correlations indicated that the monomer including hydroxymethyl supported dienophile and the other monomer contained carboxyl as diene in Diels-Alder cycloaddition. The chemical shifts (C-12 to C-17) in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{1}$ showed similarities to those of lanceolatic acid. The HMBC spectrum of 1 showed cross peak between the signals at $\delta_{\mathrm{C}} 137.5(\mathrm{C}-18)$ and $\delta_{\mathrm{H}} 2.17(\mathrm{H}-12)$. It confirmed that the linkage pattern of compound $\mathbf{1}$ is the same as lanceolatic acid should be head-to-head in Diels-Alder cycloaddition. A NOESY experiment on $\mathbf{1}$ showed that the two quaternary methyl groups in rings A and E have a cis relationship. The relative configuration of $\mathrm{C}-9, \mathrm{C}-12$ and $\mathrm{C}-17$ was also established by NOESY experiment. But the correlation of $\mathrm{H}-36$ and $\mathrm{H}-19$ was not observed in the NOESY spectrum, which indicated the double bond between C-18 and C-19 should be trans arrangement.

Table 1. ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ data of compound $\mathbf{1}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, \delta, \mathrm{ppm}, \mathrm{TMS}\right)$

NO.		NO.		NO.		NO.	
1	$37.7(\mathrm{t})$	11	$23.7(\mathrm{t})$	21	$58.0(\mathrm{~d})$	31	$17.4(\mathrm{q})$
2	$19.2(\mathrm{t})$	12	$38.8(\mathrm{~d})$	22	$149.4(\mathrm{~s})$	32	$180.9(\mathrm{~s})$
3	$38.4(\mathrm{t})$	13	$139.5(\mathrm{~s})$	23	$38.6(\mathrm{t})$	33	$107.6(\mathrm{t})$
4	$47.8(\mathrm{~s})$	14	$121.8(\mathrm{~d})$	24	$26.3(\mathrm{t})$	34	$14.5(\mathrm{q})$
5	$50.9(\mathrm{~d})$	15	$26.3(\mathrm{t})$	25	$48.5(\mathrm{~d})$	35	$23.6(\mathrm{q})$
6	$27.7(\mathrm{t})$	16	$24.5(\mathrm{t})$	26	$47.8(\mathrm{~s})$	36	$19.4(\mathrm{q})$
7	$38.8(\mathrm{t})$	17	$46.3(\mathrm{~d})$	27	$39.5(\mathrm{t})$	37	$107.8(\mathrm{t})$
8	$149.4(\mathrm{~s})$	18	$137.5(\mathrm{~s})$	28	$21.9(\mathrm{t})$	38	$18.2(\mathrm{q})$
9	$54.0(\mathrm{~d})$	19	$125.5(\mathrm{~d})$	29	$36.2(\mathrm{t})$	39	$71.4(\mathrm{t})$
10	$40.2(\mathrm{~s})$	20	$23.6(\mathrm{t})$	30	$39.8(\mathrm{~s})$	40	$14.6(\mathrm{q})$

References

1. T. Sawada, Yakugaku Zasshi, 1958, 78, 1023.
2. H. Miura, N. Kawano, Yakugaku Zasshi, 1968, 88, 1489.
3. F. R. Ansari, W. H. Ansari, W. J. Rahman, Indian. Chem. Soc. 1985, 62, 406.
4. S. Juichung, S. Masashi, J. Fac. Agric. Kyushu. Univ. 1992, 36, 301.
5. J. Du, R. Y. Chen, D. Q. Yu, J. Nat. Prod. 1999, 62, 1200.

Received 15 September 1999

